2020-present
- Gedam, M., and Zheng, H. (2024). Complement C3aR signaling: Immune and metabolic modulation and its impact on Alzheimer's disease. Eur. J. Immunol. 2023;0:2350815. DOI: 10.1002/eji.2350815.
- Wang, B., Martini-Stoica, H., Qi, C., Lu, T.C., Wang, S., Xiong, W., Qi, Y., Xu, Y., Sardiello, M., Li, H. and Zheng, H., (2023). TFEB-vacuolar ATPase signaling regulates lysosomal function and microglial activation in tauopathy. Nat Neurosci 27, 48–62 (2024). https://doi.org/10.1038/s41593-023-01494-2.
- Cemorata, M.M., Gadam, M., Xiong, W., Jin, F., Deng, L., Wang, M.C., Wang, J., Zheng, H. (2023). Oleoylethanolamide facilitates PPARα and TFEB signaling and attenuates Aβ pathology in a mouse model of Alzheimer’s disease. Mol. Neurodegen., (2023) 18:56. https://doi.org/10.1186/s13024-023-00648-x.
- Gadam, M., Cemorata, M.M., Propson, N.E., Chen, T., Jin F., Wang, M.C., and Zheng, H. (2023). Complement C3aR depletion reverses HIF-1α-induced metabolic impairment and enhances microglial responses to Aβ pathology. J. Clin. Invest. 2023; 133(12):e167501.
- Niu, M., Cao, W., Wang, Y., Zhu, Q., Luo, J., Wang, B., Zheng, H., Weitz, D.A., Zong, C. (2023). Droplet-based transcriptome profiling of individual synapses. Nat. Biotech., https://doi.org/10.1038/s41587-022-01635-1.
- Roy, E.R., Chiu, G., Li, S., Propson, N.E., Kanchi, R., Wang, B., Coarfa, C., Zheng, H., and Cao, W. (2022). Concerted type 1 interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid β plaques. Immunity, 55, 879-894.
- Du, S., Jin, F., Maneix, L., Gedem, M., Xu, Y., Catic, A., Wang, M.C., and Zheng, H. (2021). FoxO3 deficiency in cortical astrocytes leads to impaired lipid metabolism and aggravated amyloid pathology. Aging Cell, 20(8):e13432.
- Xu, Y., Propson, N.E., Du, S., Xiong, W., and Zheng, H. (2021). Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proc. Natl. Acad. Sci. USA, 118(27):e2023418118.
- Chen, F., Swartzlander, D.B., Ghosh, A., Fryer, J.D., Wang, B., and Zheng, H. (2021). Clusterin secreted from astrocyte promotes excitatory synaptic transmission and ameliorates Alzheimer’s disease neuropathology. Mol. Neurodegen., 16:5.
- Propson, N.E., Roy, E.R., Litvinchuk, A., Kohl, J., and Zheng, H. (2021). Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J. Clin. Invest. 131(1):e140966.
- Xu, Y., Du, S., Marsh, J.A., Horie, K., Sato, C., Ballabio, A., Karch, C.M., Holtzman, D.M., and Zheng, H. (2021). TFEB regulates lysosomal exocytosis of tau and its loss of function exacerbates tau pathology and spreading. Mol. Psychiatry, 26(10): 5925-39.
- Ghosh, A., Comerota, M.E., Wan, D., Chen, F., Propson, N.E., Hwang, S.H., Hammock, B.D., and Zheng, H. (2020). An epoxide hydrolase inhibitor reduces neuroinflammation in a mouse model of Alzheimer’s disease. Sci. Transl. Med. 12, eabb1206.
- Roy, E.R., Wang, B., Wan, Y.-W., Chiu, G., Cole, A., Yin, Z., Propson, N.E., Xu, Y., Jankowsky, J.L., Liu, Z., Lee, V., M.-Y., Trojankowski, J.Q., Ginsberg, S.D., Butovsky, O., Zheng, H.*, and Cao, W*. (2020). Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J. Clin. Invest. 130(4): 1912-30. *co-corresponding.
2010-2019
- Wu, Y., Du, S., Johnson, J., Tung, H.-Y., Landers, C.T., Liu, Y., Seman, B.G., Wheeler, R.T., Costa-Mattioli, M., Kheradmand, F., Zheng, H., and Corry, D.B. (2019). Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat. Commun., 10:58.
- Xu, Y., Zhang, S., and Zheng, H. (2019). The cargo receptor SQSTM1 ameliorates Tau pathology and spreading through selective targeting of pathological Tau. Autophagy, 15(4): 583-598.
- Litvinchuk, A., Wan, Y.-W., Swartzlander, D., Chen, F., Propson, N., Cole, A., Wang, Q., Zhang, B., Liu, Z., and Zheng, H. (2018). Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease. Neuron, 100(6): 1337-53.
- Martini-Stoica, H., Cole, A., Swartzlander, D.B., Chen, F., Wan, Y.-W., Bajaj, L., Bader, D., Lee, V. M.Y., Trojankowski, J.Q., Liu, Z., Sardiello, M., and Zheng, H. (2018). TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading. J. Exp. Med., 215(9): 2355-77.
- Swartzlander, D.B.*, Propson, N.E.*, Roy, E.R, Saito, T., Saido, T., Wang, B., and Zheng, H. (2018). Concurrent cell-type specific isolation and profiling of mouse brains in inflammation and Alzheimer’s disease. JCI Insight, 3(13):e121109. *Equal contribution.
- Li, Y., Chen, Z., Gao, Y., Pan, G. Zheng, H., Zhang, Y., Xu, H., Bu, G., and Zheng, H. (2017). Synaptic adhesion molecule Pcdh-γC5 mediates synaptic dysfunction in Alzheimer's disease. J. Neurosci., 37(38): 9259-68.
- Wang, B., Li, H., Mutlu, S.A., Bowser, D.A., Moore, M., Wang, M.C., and Zheng, H. (2017). The amyloid precursor protein is a conserved receptor for Slit to mediate axon guidance. eNeuro, 4(3) e0185-17.2017.
- Xu, Y., Martini-Stoica, H. and Zheng, H. (2016). A seeding based cellular assay of tauopathy. Mol. Neurodegen. 11:32.
- Lian, H.*, Litvinchuk, A.*, Chiang A., Aithmitti, N., Jankowsky, J.L. and Zheng, H. (2016). Astrocyte-microglia crosstalk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J. Neurosci., 36(2): 577-89. *Equal contribution.
- Justice, N.J., Huang, L., Tian, J.-B., Cole, A., Pruski, M., Hunt, A.J., Flores, R., Arenkiel, B.R. and Zheng, H. (2015). Post-traumatic stress disorder-like induction elevates A levels which directly activates CRF neurons to exacerbate stress responses. J. Neurosci., 35(6): 2612-23.
- Lian, H., Yang, L., Cole, A., Sun, L., Chiang, A., Flower, S.W., Shim, D.J., Rodriguez-Rivera, J., Taglialatela, G., Jankowsky, J.L., Lu, H.-C. and Zheng, H. (2015). NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron, 85(1): 101-115.
- Wang, B., Wang, Z., Sun, L., Yang, L., Li, H., Cole, A., Rodriguez-Rivera, J., Lu, H.-C. and Zheng, H. (2014). The amyloid precursor protein controls adult hippocampal neurogenesis through GABAergic interneurons. J. Neurosci., 34(40): 13314-13325.
- Li, H., Guo, Q., Inoue, T., Polito, V.A., Tabuchi, K., Hammer, R.E., Pautler, R.G., Taffet, G.E. and Zheng, H. (2014). Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol. Neurodegen., 9:28.
- Polito, V.*, Li, H.*, Martini-Stoica, H.*, Wang, B.,Yang, L., Xu, Y., Swartzlander, D., Palmieri, M., di Ronza, R., Li, V. M.-Y., Sardiello, M. Ballabio, A., and Zheng, H. (2014). Selective clearance of aberrant Tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med., 6(9): 1142-1160. *Equal contribution.
- Guo, Q., Li, H., Cole, A.L., Hur, J.-Y., Li, Y. and Zheng, H. (2013). Modeling Alzheimer’s disease in mouse without mutant protein overexpression: Cooperative and independent effects of Abeta and Tau. PLoS ONE, 8(1): e80706.
- Lian, H., Shim, D.J., Gaddam, S.S.K., Rodriguez-Rivera, J., Ritner, B.R., Pautler, R.G., Robertson, C.S. and Zheng, H. (2012). IkB deficiency in brain leads to elevated basal neuroinflammation and attenuated response following traumatic brain injury: Implications for functional recovery. Mol. Neurodegen.7:47.
- Wiese, M., Antebi, A., and Zheng, H. (2012). Regulation of neuronal APL-1 expression by cholesterol starvation. PLoS ONE, 7(2): e32038.
- Guo, Q., Zheng, H.* and Justice, N.J.* (2012). Central Corticotropin Releasing Factor system perturbation promotes HPA axis hyperactivity and elevated anxiety-related behavior in a familial Alzheimer's Disease knock-in mouse model. Neurobiol Aging 33(11): 2678-2691. *co-corresponding.
- Guo, Q., Li, H., Gaddam, S.S.K., Justice, N.J., Robertson, C.S., and Zheng, H. (2012). Amyloid precursor protein revisited: Neuronal-specific expression and the highly stable nature of soluble derivatives. J. Biol. Chem. 287(4): 2437-45.
- Wang, B., Harrison, W., Overbeek, P. and Zheng, H. (2011). Transposon mutagenesis with coat color genotyping identifies an essential role of SKOR2 in Sonic Hedgehog signaling and cerebellum development. Development, 138: 4487-4497.
- Shim, D.J., Yang, L., Reed, J.G., Nobels, J.L., Chiao, P.J., and Zheng, H. (2011). Disruption of the NF-κB/IκBα autoinhibitory loop improves cognitive performance and promotes hyperexcitability of hippocampal neurons. Mol. Neurodegen., 6:42.
- Barbagallo, A.P.M., Wang, Z., Zheng, H., and D’Adamio, L. (2011). The intracellular threonine of amyloid precursor protein that is essential for docking of Pin1 is dispensable for developmental function. PLoS ONE, 6: e18006.
- Barbagallo, A.P.M., Wang, Z., Zheng, H., and D’Adamio, L. (2011). A single tyrosine residue in the amyloid precursor protein intracellular domain is essential for developmental function. J. Biol. Chem., 286: 8717-8721.
- Li, H., Wang, B., Wang, Z., Guo, Q., Tabuchi, K., Hammer, R., Sudhof, T., and Zheng, H. (2010). Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP. Proc. Natl. Acad. Sci. USA, 107: 17362-17367.
- Wiese, M., Antebi, A. and Zheng, H. (2010). Intracellular Trafficking and Synaptic Function of APL-1 in Caenorhabditis elegans. PLoS ONE, 5: e12790.
- Li, H., Wang, Z., Wang, B., Guo, Q., Dolios, G., Tabuchi, K., Hammer, R.E., Sudhof, T.C., Wang, R. and Zheng, H. (2010). Genetic dissection of the amyloid precursor protein in developmental function and amyloid pathogenesis. J. Biol. Chem., 285: 30598-30605.
- Peethumnongsin, E., Yang, L., Kallhoff-Munoz, V., Hu, L., Takashima, A., Pautler, R.G., and Zheng, H. (2010). Convergence of presenilin- and tau-mediated pathways on axonal trafficking and neuronal function. J. Neurosci., 30: 13409-13418.
2000-2009
- Yang, L., Wang, Z., Wang, B., Justice, N., and Zheng, H. (2009). Amyloid precursor protein regulates Cav1.2 L-type calcium channel levels and function to influence GABAergic short-term plasticity. J. Neurosci., 29: 15660-15668.
- Shelton, C.C., Zhu, L., Chau, D., Yang, L., Wang, R., Djaballah, H., Zheng, H., and Li, Y.-M. (2009). Modulation of γ-secretase specificity using small molecule allosteric inhibitors. Proc. Natl. Acad. Sci. USA, 106: 20228-20233.
- Wang, Z., Wang, B., Yang, L., Guo, Q., Aithmitti, N., Songyang, Z. and Zheng, H. (2009). Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J. Neurosci., 29:10788-10801. Selected as a “This Week in the Journal” article.
- Kallhoff-Munoz, V., Hu, L., Chen, X. Pautler, R.G. and Zheng, H. (2008). Genetic dissection of γ-secretase-dependent and -independent functions of presenilin in regulating neuronal cell cycle and cell death. J. Neurosci., 28:11421-11431.
- Yang, L., Wang, B. Long, C., Wu, G. and Zheng, H. (2007). Increased asynchronous release and aberrant calcium channel activation in amyloid precursor protein deficient neuromuscular synapses. Neuroscience, 149: 768-778.
- Wang, B., Yang, L., Wang, Z. and Zheng, H. (2007). Amyolid precursor protein mediates presynaptic localization and activity of the high-affinity choline transporter. Proc. Natl. Acad. Sci. USA, 104: 14140-14145.
- Kallhoff, V., Peethumnongsin, E. and Zheng, H. (2007). Lack of α-synuclein increases amyloid plaque accumulation in a transgenic mouse model of Alzheimer’s disease. Mol. Neurodegeneration, 2:6.
- Wang, R., Wang, B., He, W., and Zheng, H. (2006). Wild-type presenilin protects against Alzheimer’s disease mutation-induced amyloid pathology. J. Biol. Chem., 281: 15330-15336.
- Deng, Y., Tarassishin, L., Kallhoff, V., Peethumnongsin, E., Wu, L., Li, Y. and Zheng, H. (2006). Deletion of presenilin 1 hydrophilic loop sequence leads to impaired -secretase activity and exacerbated amyloid pathology. J. Neurosci. 26: 3845-3854.
- Wang, R., Tang, P., Wang, P., Boissy, R.E. and Zheng, H. (2006). Regulation of tyrosinase trafficking and processing by presenilins: Partial loss of function by familial Alzheimer’s disease mutation. Proc. Natl. Acad. Sci. USA 103: 353-358.
- Wang, P., Yang, G., Mosier, D.R., Chang, P., Zaidi, T., Gong, Y.-D., Zhao, N.-M., Dominguez, B., Lee, K.-F., Gan, W.-B. and Zheng, H. (2005). Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-like protein 2. J. Neurosci. 25: 1219-1225.
- Wang, R., Dineley, K.T., Sweatt, J.D, and Zheng, H. (2004). Presenilin 1 Alzheimer’s disease mutation leads to impaired adult neurogenesis and defective associative learning. Neuroscience 126: 305-312.
- Qyang, Y., Chambers, S.M., Wang, P., Xia, X., Chen, X., Goodell, M.A. and Zheng, H. (2004). Myeloproliferative disease in mice with reduced presenilin gene dosage: Effect of -secretase blockage. Biochemistry 43: 5352-5359.
- Wang, P., Pereira, F. A., Beasley, D., and Zheng, H. (2003). Presenilins are required for the formation of comma- and S-shaped bodies during nephrogenesis. Development 130: 5019-5029.
- Kang, D.E., Soriano, S., Xia, X., Eberhart, C.G., De Strooper, B., Zheng, H., and Koo, E.H. (2002). Presenilin couples the paired phosphoryllation of -catenin independent of axin: Implications for -catenin activation in tumorigenesis. Cell 110: 751-762.
- Xia, X., Wang, P., Sun, X., Soriano, S., Shum, W.-K., Trumbauer, M.E., Takashima, A., Koo, E.H., and Zheng, H. (2002). The aspartate-257 of presenilin 1 is indispensable for mouse development and production of -amyloid peptides through -catenin independent mechanisms. Proc. Natl. Acad. Sci. USA 99: 8760-8765.
- Dineley, K.T., Xia, X., Bui, D., Sweatt, J.D., and Zheng, H. (2002). Accelerated plaque accumulation, associative learning deficits and up-regulation of 7 nicotinic acetylcholine receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. J. Biol. Chem. 277: 22768-22780.
- Xia, X., Qian, S., Soriano, S., Wu, Y., Fletcher, A., Wang, X.-J., Koo, E.H., Wu, X., and Zheng, H. (2001). Loss of presenilin 1 is associated with enhanced -catenin signaling and skin tumorigenesis. Proc. Natl. Acad. Sci. USA 98: 10863-10868.